|   | _  | _  |             |  |
|---|----|----|-------------|--|
| 1 | () | ') | <b>1</b> /- |  |
|   | 3  |    | n.          |  |

|  | 2 | 700 SE | RIES |
|--|---|--------|------|
|  |   |        |      |
|  |   |        |      |
|  |   |        |      |



# Audio Test and Measurement System Unmatched Performance



## High-Performance Testing with the Audio Precision 2700 Series

Audio Precision's 2700 series is the newest generation of the company's award-winning PC-controlled audio test and measurement instruments, long the recognized worldwide standard for the design and test of audio equipment. The 2700 series continues to provide the unmatched distortion and noise performance required to test the latest advances in converter technology, while raising the bar with new 192k digital input and output capabilities.

In the SYS-2722, a true dual-domain architecture provides uncompromised performance for both analog and digital signals: the hardware generator and analyzer specifications surpass those of any digital configuration, while digital analysis techniques offer a wide array of high-speed, precise measurements for either domain. Cross-domain work can be accomplished using the best of both worlds.

## **Unparalleled Precision**

#### **Low Distortion**

Analog system 1 kHz THD+N, 20 kHz BW  $\leq$  -112 dB (Typical worst case harmonic < -130 dB)

Digital generator distortion/spurious products ≤ -160 dB

#### **High Bandwidth**

Analog signal generation to **204 kHz**Analog measurements to **500 kHz** 

Analysis by FFTs and Multitone to 120 kHz

#### Low Noise

Analog analyzer 22 Hz–22 kHz BW  $\leq$  –118 dBu Analog analyzer A-weighted  $\leq$  –124 dBu

#### Flat Response

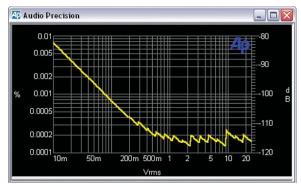
Analog system 20 Hz–20 kHz typically  $\pm$  **0.003 dB** 

#### **Low Crosstalk**

Analog inputs 20 Hz–20 kHz  $\leq$  -140 dB Analog output 20 Hz–20 kHz  $\leq$  -120 dB

#### **Low Jitter**

700 Hz–100 kHz BW  $\leq$  600 ps 50 Hz–100 kHz BW  $\leq$  1.0 ns


#### **FFT Acquisitions**

Up to 4 M Samples (87 s @ 48 kHz F<sub>s</sub>)

#### The 2700 series

- The unparalleled precision of a dedicated hardware instrument.
- Fast instrument operation and powerful analysis under sophisticated control software.
- Programmatic control for high-speed automation.
- Serial digital interface testing.
- · Flexible configuration options.
- \* A family of auxiliary instruments for specialized testing.
- \* AES3, IEC60958 (SPDIF) and PSIA input and output sample rates at 192 kHz.

The 2700 series. Proven, reliable, high-performance technology from Audio Precision, the industry's preeminent audio test and measurement company.



Analog system 1 kHz THD+N, 20 kHz BW  $\leq$  -112 dB

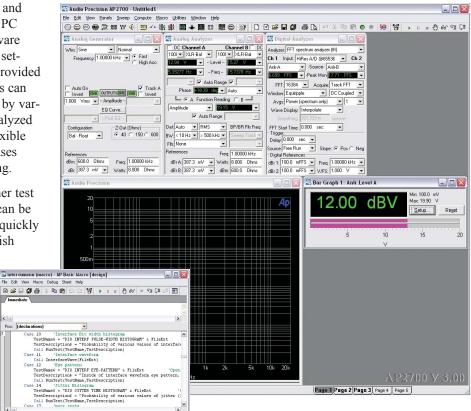


2700 series dual-domain model SYS-2722 192k

## PC Control and Programmability

The 2700 series control software is a powerful and sophisticated real-time interface that runs on a PC controlling the instrument. Hardware and software system modules and functions are operated by settings on software panels, with measurements provided in panel reading displays. Settings and readings can be swept and plotted on X-Y graphs, modified by various algorithms, compared against limits or analyzed by DSP techniques. The control software is flexible and configurable, addressing a wide range of uses from benchtop engineering to production testing.

Test setups, measurement data, graphs and other test components are saved on the PC. These files can be emailed or exchanged between co-workers to quickly duplicate test setups, study test results or publish reports — regardless of location.

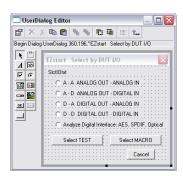

The 2700 series control software supports Microsoft Windows 98, Windows 2000 and Windows XP. Graphs and data can be pasted into other Windows-compatible applications and can be exported in a number of different formats.

- GPIB versions of each 2700 series model are available, providing an IEEE-488 interface for compatibility with third-party automated testing instruments.
- The entire testing process can be automated for repeatability and speed by programmatically control-

ling the 2700 series instrument using AP
Basic, the Audio Precision programming language included with the 2700 series. Every
setting, reading and setup parameter in the
2700 series control software is available
in the AP Basic command set. AP Basic supports complex, branched testing programs
as well as simple step-by-step macros.

Stop Learn Mode

 You can create, edit and run AP Basic macros without ever leaving the control software. The Macro Editor provides complete editing, debugging and syntax help.




Create and edit macros and verify your code using the Step and Trace mode in the Macro Editor.

- AP Basic works with the control software using ActiveX Automation. The entire command structure is accessible to Microsoft Visual Basic®, enabling you to integrate your 2700 series instrument with a wide variety of applications and equipment.
- Learn Mode is a "macro recorder" that provides a fast and convenient way to generate automated test macros, even if you have little programming experience.
- A Dialog Editor provides an easy way to design a custom user interface "front-end" for your automation macros. Drag-and-drop in the Dialog Editor, and the underlying code is written into the Macro Editor script.



Use the Object Browser to easily integrate commands and correct syntax while working in the Macro Editor.



Design professional user interface panels within your macro using the Dialog Editor.

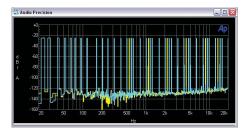
## Unparalleled Speed

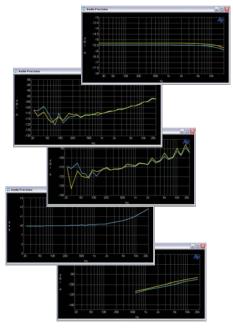
The 2700 series offers an array of powerful, time-saving analysis tools to speed your testing procedures.

Multitone Multitone testing techniques can provide response, distortion, noise, crosstalk and phase measurements — all from a single sub-second acquisition. You can address a wide variety of high-speed testing applications by choosing a standard stimulus waveform, or by making your own using the multitone creation utility. In addition to great speed, multitone analysis brings other advantages: a stimulus signal, for example, that is a rich mix of frequencies, levels and phase relationships that more closely resembles program material than conventional single stimulus tones; and the unique ability to measure noise or very low distortion products in the presence of signal.

Fast detection The DSP-implemented Fast RMS Detector speeds sine wave sweeps by making measurements in as little as one cycle of the sine wave. This can provide an improvement in testing speed of an order of magnitude compared to normal RMS detector techniques.

Harmonic Sum 1





Harmonic selection controls and a graph of individual harmonic amplitudes plotted against frequency.

**Proprietary Harmonic Distortion Analyzer** An FFT-implemented dual-channel Harmonic Distortion Analyzer can simultaneously measure the individual amplitudes of a fundamental frequency and up to four harmonic products, selectable from the 2nd to the 15th harmonic. Sweeps using this analysis tool can rapidly characterize frequency or amplitude dependent distortion mechanisms.



**Fast data settling** A sophisticated data settling algorithm enables you to optimize the inherent trade-off between testing speed and measurement accuracy in sweep tests. Individual settling parameters are stored for every measurement available in the instrument.





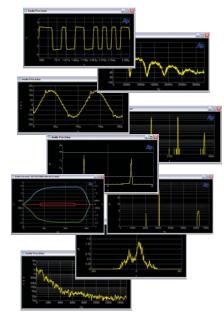
The graph at the top shows a spectrum display of a multitone stimulus. The next graphs are examples of five dual-channel parameters plotted against frequency, all produced from a single multitone stimulus lasting less than one second.

**MLS analysis** Quasi-anechoic measurements of transducers and acoustic spaces can be performed using MLS (Maximum Length Sequence) signals and analysis to produce impulse, frequency and phase response graphs in less than one second.

Hardware and software filters Make noise measurements to virtually any international standard using our extensive collection of weighting and band-limiting filters. Use optional Audio Precision hardware filters (for the Analog Analyzer) or Audio Precision software filters (for the DSP Audio Analyzer); or make your own user-downloadable software filters using the Filter Creation Utility.



Loudspeaker impulse response graph, showing a 6.6 ms delay before the impulse peak.


## **Digital Interface Capabilities**

The 2700 series offers both AES3 and IEC60958 serial digital interfaces, with fully configurable serial data and clock ports available via the auxiliary PSIA-2722 Programmable Serial Interface Adapter.

All digital input and output capabilities are functional over the full range of sample rates from 8 kHz to beyond 200 kHz.

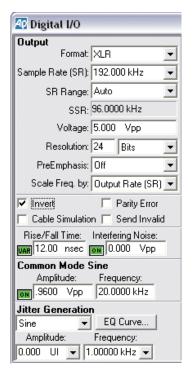
The Digital Input/Output panel provides complete control and display of serial interface parameters including connector and format selection, sample rate, resolution, pulse amplitude, active data bits, error flags and received jitter amplitude. A Status Bits panel enables you to set and read interface metadata in both professional and consumer formats. Metadata is displayed in both hex and English interpretations.

Test the performance of AES3 or 60958 receivers with sub-standard signals by introducing impairments to the output serial interface signal. Impairments include variable sample rate, pulse amplitude and rise and fall times, the addition of noise, common-mode signals, controllable jitter and a long cable simulation.



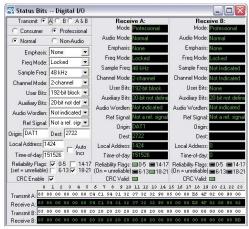
Fully characterize a serial digital bit stream including waveforms, eye patterns, spectrums and histograms, as shown by these nine graphs.




Digital Input/Output panel

#### **Digital Inputs and Outputs**

Choose balanced XLR for the AES3 format, unbalanced BNC for the 60958 format, or a Toslink® connector for optical output or input to 192k. The second connectors can be used to switch between cables or in dual-connector mode. Rearpanel jacks provide reference, clock and trigger inputs and outputs.




Rear panel connections

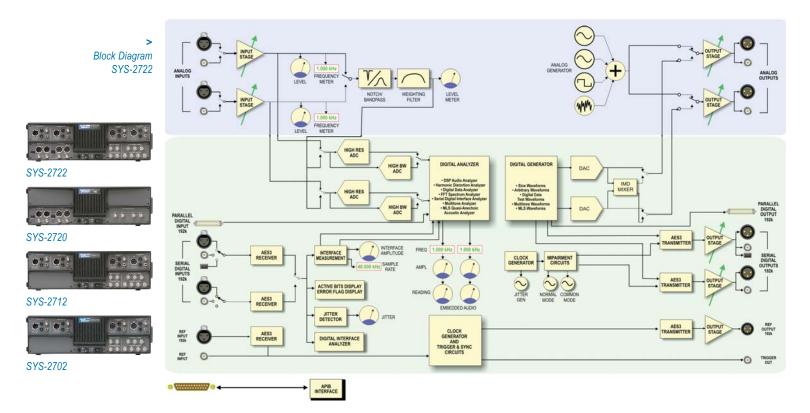


Selectively inject various impairments into the digital signal to test device performance.

Use the Digital Interface Analyzer tool to measure and display the interface signal or jitter waveform and spectrum, histograms for a number of interface measurements or to generate an eye pattern. Add jitter of various types and amplitudes to the generated bitstream and measure the effect on the receiver and the resulting audio signal.



Complete Status Bit metadata setting and display for either consumer or professional format.


- An Eye Pattern is a triggered oscilloscope view of the minimum pulse stream amplitude vs. time, computed over thousands of data cells. The eye opening provides a quick check of signal amplitude, signal-to-noise ratio, rise and fall times and jitter.
- Histograms display the probability distribution
  of pulse stream parameters like timing (jitter),
  amplitude, sample rate and bit width. The interface signal and the jitter waveform can be
  viewed either in the time domain (oscilloscope
  view) or the frequency domain (FFT spectrum).

# 2700 Series Specifications Summary

| Low Distortion Sine Wa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | PUTS (except SYS-2720)                                                                                                                                                                                                                                                               | Other Signals                                                                                                | Bandreject Amplitude                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| onio 114                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | ave Generator                                                                                                                                                                                                                                                                        | Arbitrary and Multitone Waveforms ("Arb Wfm")                                                                | Tuning Range (f <sub>0</sub> )                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| equency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      | Signal Determined by the associated file specified in the panel                                              | Tuning Accuracy                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| requency Accuracy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 10 Hz=z0+ KHz.                                                                                                                                                                                                                                                                     | drop-down box.                                                                                               | Bandreject Response                                                                                                                                                                | . typically $-3$ dB at 0.73 f <sub>0</sub> & 1.37 f <sub>0</sub> , $-20$ dB at f <sub>0</sub> $\pm 10\%$ ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | .0.029/                                                                                                                                                                                                                                                                              | Maximum Length Sequence ("MLS")                                                                              |                                                                                                                                                                                    | -40 dB at f <sub>o</sub> ±2.5%.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| High-accuracy mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                      | Sequences Four pink, four white.                                                                             |                                                                                                                                                                                    | . $\pm 0.3$ dB, 20 Hz–120 kHz (excluding 0.5 f <sub>0</sub> –2.0 f <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Fast mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . ±0.5%.                                                                                                                                                                                                                                                                             | Special Signals                                                                                              | THD+N Function                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| requency Resolution<br>High-accuracy mode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 0.0059/                                                                                                                                                                                                                                                                              | Polarity Sum of two sine waves phased for reinforcement with                                                 | Fundamental Range                                                                                                                                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0.025 Hz, 10 Hz-204.75 Hz, 0.25 Hz, 205 Hz-2.0475 kHz,                                                                                                                                                                                                                             | normal polarity.                                                                                             |                                                                                                                                                                                    | . ±0.3 dB, 20 Hz–120 kHz harmonics.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.5 Hz, 2.05 kHz–20.475 kHz, 25 Hz, 20.5 kHz–20.4 kHz.                                                                                                                                                                                                                               | Pass Thru Passes the embedded audio signal from the rear panel                                               | Measurement Bandwidth                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| mplitude Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 2.3 112, 2.03 ki iz=20.47 3 ki iz, 23 112, 20.3 ki iz=204 ki iz.                                                                                                                                                                                                                     | Reference Input. Ratio of reference rate to output Sample                                                    | LF -3 dB                                                                                                                                                                           | . <10, 22, 100, or 400 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <10 μV–26.66 Vrms [+30.7 dBu].                                                                                                                                                                                                                                                     | Rate may not exceed 8:1.                                                                                     | HF –3 dB                                                                                                                                                                           | . 22k, 30k, 80k, or >500 kHz. (Option filter selection also                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . <10 μV=20.00 Viiiis [+30.7 dBu].<br>. <10 μV=13.33 Vrms [+24.7 dBu].                                                                                                                                                                                                               | Squarewave                                                                                                   |                                                                                                                                                                                    | affects bandwidth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ±0.7% [±0.06 dB] at 1 kHz.                                                                                                                                                                                                                                                         | Frequency Range 20 Hz–20.0 kHz.                                                                              | Residual THD+N                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 0.003 dB or 0.05 µVrms, whichever is larger.                                                                                                                                                                                                                                       | Noise Signal                                                                                                 | At 1 kHz                                                                                                                                                                           | . ≤(0.00025% + 1.0 µV) [-112 dB], 22 kHz BW (valid on                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atness (1 kHz ref)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 0.003 db of 0.03 pvillis, whichever is larger.                                                                                                                                                                                                                                     | Pseudo-random white                                                                                          |                                                                                                                                                                                    | for analyzer inputs ≤8.5 Vrms).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . ±0.008 dB (typically <0.003 dB).                                                                                                                                                                                                                                                   |                                                                                                              | 20 Hz-20 kHz                                                                                                                                                                       | ≤(0.0003% + 1.0 µV) [–110.5 dB], 22 kHz BW,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| 20 kHz–50 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      | ANALOG OUTPUT CHARACTERISTICS                                                                                |                                                                                                                                                                                    | $\leq$ (0.0005% + 2.0 $\mu$ V) [-106 dB], 80 kHz BW, $\leq$ (0.001                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 50 kHz–120 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                      | Source Configuration Selectable balanced, unbalanced, or CMTST                                               |                                                                                                                                                                                    | + 5.0 μV) [–100 dB], 500 kHz BW                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| 120 kHz-200 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . +0.2 / -0.3 dB.                                                                                                                                                                                                                                                                    | (common mode test).                                                                                          | 10 Hz-100 kHz                                                                                                                                                                      | ≤(0.0040% + 5.0 $\mu$ V) [–88 dB], 500 kHz BW.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| esidual THD+N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      | Source Impedances                                                                                            | Minimum Input                                                                                                                                                                      | . 5 mV for specified accuracy, usable to <100 µV with fix                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| At 1 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | . ≤(0.00025% + 1.0 μV) [-112 dB], 22 kHz BW (valid only                                                                                                                                                                                                                              | Balanced or CMTST 40 $\Omega$ (±1 $\Omega$ ), 150 $\Omega$ (±1.5 $\Omega$ ), or 600 $\Omega$ (±3 $\Omega$ ). |                                                                                                                                                                                    | notch tuning.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | for analyzer inputs ≤8.5 Vrms).                                                                                                                                                                                                                                                      | Unbalanced                                                                                                   | IMD Massauranta uni                                                                                                                                                                | Ab aution ((IRAD))                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| 20 Hz-20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . ≤(0.0003% + 1.0 μV) [–110.5 dB], 22 kHz BW,                                                                                                                                                                                                                                        | Max Output Power into 600 Ω                                                                                  | IMD Measurements wi                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $\leq$ (0.0005% + 2.0 $\mu$ V) [-106 dB], 80 kHz BW, $\leq$ (0.0010%                                                                                                                                                                                                                 | Balanced+30.1 dBm (Rs = 40 Ω).                                                                               | SMPTE (DIN) IMD Fun                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | + 5.0 μV) [–100 dB], 500 kHz BW.                                                                                                                                                                                                                                                     | Unbalanced $+24.4 \text{ dBm (Rs} = 20 \Omega).$                                                             | Test Signal Compatibility                                                                                                                                                          | . Any combination of 40 Hz–250 Hz (LF) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 10 Hz–100 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . ≤(0.0040% + 5.0 $\mu$ V) [–88 dB], 500 kHz BW.                                                                                                                                                                                                                                     | Output Related Crosstalk                                                                                     |                                                                                                                                                                                    | 2 kHz-100 kHz (HF) tones, mixed in any ratio from 0:1 to 8:1 (LF:HF).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| tormodulation Distant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | tion Test Signals with option "IMD"                                                                                                                                                                                                                                                  | ·                                                                                                            | COIE and DED INC C                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | uon rest signais with option Timio                                                                                                                                                                                                                                                   | 10 Hz–20 kHz ≤–120 dB or 5 μV, whichever is greater.                                                         | CCIF and DFD IMD Fu                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| MPTE (or DIN)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 40 50 00 70 400 405 050500 ! " 4.50"                                                                                                                                                                                                                                                 | 20 kHz–100 kHz ≤–106 dB or 10 μV, whichever is greater.                                                      | rest Signal Compatibility                                                                                                                                                          | . Any combination of equal amplitude tones from                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 40, 50, 60, 70, 100, 125, 250, or 500 Hz; all ±1.5%.                                                                                                                                                                                                                               |                                                                                                              | DIM (TIM) INC.                                                                                                                                                                     | 4 kHz-100 kHz spaced 80 Hz-1 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| F Tone Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                      | ANALOG ANALYZER (except SYS-2720)                                                                            | DIM (TIM) IMD Function                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| lix Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | . 4:1 or 1:1 (LF:HF).                                                                                                                                                                                                                                                                | Analog Input Characteristics                                                                                 | rest Signal Compatibility                                                                                                                                                          | . 2.96 kHz–3.15 kHz squarewave mixed with                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| CIF and DFD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      |                                                                                                              |                                                                                                                                                                                    | 14 kHz-15 kHz sine wave (probe tone).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ifference Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 80, 100, 120, 140, 200, 250, 500 or 1 kHz; all ±1.5%.                                                                                                                                                                                                                              | Input Ranges                                                                                                 | Wow & Flutter Measur                                                                                                                                                               | ements with option "W&F"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| enter Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 4.5 kHz-200 kHz.                                                                                                                                                                                                                                                                   | Maximum Rated Input 230 Vpk, 160 Vrms (dc to 20 kHz), overload protected in                                  | Test Signal Compatibility                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| IM (or TIM)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                      | all ranges.                                                                                                  | Normal                                                                                                                                                                             | 2 90 144 - 3 35 144 -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| quarewave Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 3.15 kHz (DIM-30 and DIM-100),                                                                                                                                                                                                                                                     | Input Impedance                                                                                              |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2.96 kHz (DIM-B); both ±1%.                                                                                                                                                                                                                                                          | Balanced 200 kΩ / 95 pF (differential).                                                                      | "High-band"                                                                                                                                                                        | . 11.5 KHZ-13.5 KHZ.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| inewave Frequency                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . 15 kHz (DIM-30 and DIM-100), 14 kHz (DIM-B).                                                                                                                                                                                                                                       | Unbalanced 100 kΩ / 185 pF.                                                                                  | DSP ANALYSIS OF AN                                                                                                                                                                 | ALOG SIGNALS ( SYS-2712 and SYS-2722 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      | Terminations Selectable 600 Ω or 300 Ω, each ±1%, 1 Watt [+30 dBm]                                           | DOI ANALIGIO OI AN                                                                                                                                                                 | ALOG GIGITALO ( 616-2112 dilu 616-2122 diliy)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| pecial Purpose Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Is with option "BUR"                                                                                                                                                                                                                                                                 | maximum power.                                                                                               | High Resolution Conv                                                                                                                                                               | erter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ine Burst                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                      | Level Meter Related                                                                                          | A/D Resolution                                                                                                                                                                     | . 24-bit sigma-delta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| requency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 20 Hz–100 kHz.                                                                                                                                                                                                                                                                     | Measurement Range 5 mV-160 V for specified accuracy and flatness, usable                                     | Sample Rate (fs)                                                                                                                                                                   | . 8 ks/s-108 ks/s variable; or 65.536 ks/s fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| quare Wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      | to <100 μV.                                                                                                  |                                                                                                                                                                                    | . ±0.01 dB to 0.45 x SR or 20 kHz, whichever is lower.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| requency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | . 20 Hz–20 kHz.                                                                                                                                                                                                                                                                      | Accuracy (1 kHz)±0.5% [±0.05 dB].                                                                            | . ,                                                                                                                                                                                | . −105 dB for $f_s$ ≤65.536 ks/s, −102 dB for $f_s$ up to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| loise Signals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      | Flatness (1 kHz ref)                                                                                         | Diotoritori                                                                                                                                                                        | 100 ks/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Bandwidth limited 10 Hz-23 kHz.                                                                                                                                                                                                                                                    | 20 Hz-20 kHz±0.008 dB (typically <0.003 dB).                                                                 |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Bandwidth limited 20 Hz-200 kHz.                                                                                                                                                                                                                                                   | 15 Hz–50 kHz±0.03 dB.                                                                                        | High Bandwidth Conv                                                                                                                                                                | erter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Approximately 1/3-octave (2-pole) filtered pink noise,                                                                                                                                                                                                                             | 10 Hz–120 kHz ±0.10 dB.                                                                                      | A/D Resolution                                                                                                                                                                     | . 16-bit sigma-delta.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | continuously tunable from 20 Hz–100 kHz.                                                                                                                                                                                                                                             | 120 kHz–200 kHz +0.2 / –0.3 dB (typically <–0.5 dB at 500 kHz).                                              | Sample Rate (f <sub>S</sub> )                                                                                                                                                      | . 16 ks/s-200 ks/s variable; or 131.072 ks/s, or 262.144                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . True random or pseudo-random.                                                                                                                                                                                                                                                      | Frequency Meter Related                                                                                      |                                                                                                                                                                                    | fixed.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . Typically 262 ms (synchronized to the analyzer 4/s                                                                                                                                                                                                                                 |                                                                                                              | Flatness (1 kHz ref)                                                                                                                                                               | . ±0.01 dB to 20 kHz, ±0.10 dB to 120 kHz (262.144 ks/                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| seuuo-nanuonn milervar .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | reading rate).                                                                                                                                                                                                                                                                       | Measurement Range 10 Hz–500 kHz.                                                                             | Distortion                                                                                                                                                                         | 92 dB for $f_S$ ≤200 ks/s, -90 dB with $f_S$ = 262.144 ks/s                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | roduling rato).                                                                                                                                                                                                                                                                      | Accuracy ±0.0006% [±6 PPM].                                                                                  |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /A GENERATED ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | OC SIGNALS                                                                                                                                                                                                                                                                           | Resolution                                                                                                   |                                                                                                                                                                                    | ith "FFT" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| A GENERALED ANAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LOG SIGNALS                                                                                                                                                                                                                                                                          | Minimum Input 5 mV.                                                                                          | Acquisition Length                                                                                                                                                                 | . 800 samples to 4 M samples in 15 steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| ommon Specifications                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s                                                                                                                                                                                                                                                                                    | Phase Measurement Related                                                                                    | Transform Length                                                                                                                                                                   | . 256–32768 samples in binary steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| ample Rate                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                      | Measurement Ranges ±180, –90 / +270, or 0 / +360 deg.                                                        | Processing                                                                                                                                                                         | . 48 bit.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . fixed at 65.536 ks/s or 131.072 ks/s.                                                                                                                                                                                                                                              | Accuracy                                                                                                     | Amplitude Accuracy                                                                                                                                                                 | . ±0.09 dB, 20 Hz–20 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| . •                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | . 8 ks/s=108 ks/s variable, or fixed at 65.536 ks/s or 131.072                                                                                                                                                                                                                       | 10 Hz–5 kHz ±0.5 deg.                                                                                        |                                                                                                                                                                                    | . 1–4096 averages in binary steps. Averaging is power-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Outer agridis                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 8 KS/S—108 KS/S Variable, of fixed at 65.536 KS/S of 131.072 ks/s                                                                                                                                                                                                                  | 5 kHz-20 kHz ±1 deq.                                                                                         |                                                                                                                                                                                    | based (frequency domain), or synchronous (time doma                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| τεσμενον Δοσμέρου                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | . ±0.0002% [2 PPM] internal reference, lockable to                                                                                                                                                                                                                                   | 20 kHz–50 kHz±2 deq.                                                                                         | Windows                                                                                                                                                                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | external reference.                                                                                                                                                                                                                                                                  | Wideband Amplitude/Noise Function                                                                            |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| /A Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                      | Measurement Range <1 µV–160 Vrms.                                                                            |                                                                                                                                                                                    | ith "Analyzer" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . z . s., sigina asia.                                                                                                                                                                                                                                                               |                                                                                                              | Wideband Level/Ampl                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      |                                                                                                              | Accuracy (1 kHz)                                                                                                                                                                   | . ±0.09 dB [±1.0%].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SINE (D/A)" Signal Fan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | mily                                                                                                                                                                                                                                                                                 | Accuracy (1 kHz) ±1.0% [±0.09 dB].                                                                           |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | mily<br>. 10 Hz-30 kHz (65.536 ks/s), or                                                                                                                                                                                                                                             | Flatness (1 kHz ref)                                                                                         | Frequency Range                                                                                                                                                                    | . <10 Hz to 45% of Sample Rate [10 Hz-21.6 kHz at 48 ks                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                      | Flatness (1 kHz ref) 20 Hz–20 kHz±0.02 dB.                                                                   |                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| requency Ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10 Hz-30 kHz (65.536 ks/s), or                                                                                                                                                                                                                                                     | Flatness (1 kHz ref)                                                                                         |                                                                                                                                                                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters a                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| SINE (D/A)" Signal Far<br>requency Ranges<br>latness (1 kHz ref)<br>20 Hz–20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 10 Hz–30 kHz (65.536 ks/s), or<br>10 Hz–60 kHz (131.072 ks/s).                                                                                                                                                                                                                     | Flatness (1 kHz ref)  20 Hz–20 kHz ±0.02 dB.  15 Hz–50 kHz ±0.05 dB.  50 kHz–120 kHz ±0.15 dB.               | High pass Filters                                                                                                                                                                  | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters a<br>enabled).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| requency Ranges latness (1 kHz ref) 20 Hz–20 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 10 Hz-30 kHz (65.536 ks/s), or<br>10 Hz-60 kHz (131.072 ks/s).<br>. ±0.01 dB.                                                                                                                                                                                                      | Flatness (1 kHz ref) 20 Hz–20 kHz ±0.02 dB. 15 Hz–50 kHz ±0.05 dB.                                           | High pass Filters                                                                                                                                                                  | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| requency Ranges latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | . 10 Hz-30 kHz (65.536 ks/s), or<br>10 Hz-60 kHz (131.072 ks/s).<br>.±0.01 dB.<br>.±0.03 dB.                                                                                                                                                                                         | Flatness (1 kHz ref)  20 Hz–20 kHz ±0.02 dB.  15 Hz–50 kHz ±0.05 dB.  50 kHz–120 kHz ±0.15 dB.               | High pass Filters Low pass Filters                                                                                                                                                 | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters a<br>enabled). F <sub>2</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15<br>(6-pole elliptic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 10 Hz-30 kHz (65.536 ks/s), or<br>10 Hz-60 kHz (131.072 ks/s).<br>. ±0.01 dB.                                                                                                                                                                                                      | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters                                                                                                                                                                  | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters enabled).<br>F <sub>9</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15<br>(6-pole elliptic).<br>ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| requency Ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10 Hz-30 kHz (65.536 ks/s), or<br>10 Hz-60 kHz (131.072 ks/s).<br>. ±0.01 dB.<br>. ±0.03 dB.<br>. ±0.10 dB (typically -0.5 dB at 60 kHz).                                                                                                                                          | Flatness (1 kHz ref) 20 Hz-20 kHz                                                                            | High pass Filters Low pass Filters                                                                                                                                                 | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters:<br>enabled). F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15<br>(6-pole elliptic). ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk r<br>IEC468 (CCIR), CCIR RMS per AES17, C-message pe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| requency Ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).                                                                                                                                                           | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters Low pass Filters                                                                                                                                                 | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters a<br>enabled).<br>.F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15<br>(6-pole elliptic).<br>ANSI-IEC *A" weighting, per IEC Rec 179, CCIR QPk p<br>IEC468 (CCIR), CCIR RMS per AES17, C-message pe<br>IEEE 5td 743-1978, CCITT per CCITT Rec. 0.41, "F"                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| requency Ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10 Hz-30 kHz (65.536 ks/s), or<br>10 Hz-60 kHz (131.072 ks/s).<br>. ±0.01 dB.<br>. ±0.03 dB.<br>. ±0.10 dB (typically –0.5 dB at 60 kHz).<br>. 0.0007% [–103 dB].<br>. 0.0014% [–97 dB].                                                                                           | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters Low pass Filters                                                                                                                                                 | . F <sub>s</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic)ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk p. IEC 468 (CCIR), CCIR RMS per AES17, C-message per LEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| equency Ranges  atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz 1D+N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB.                                                                                 | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters                                                                                                                             | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4- (4-pole Butterworth or 10-pole elliptic if no other filters renabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk piEC488 (CDIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| equency Ranges  atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz 1D+N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB.                                                                                 | Flatness (1 kHz ref)  20 Hz-20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters                                                                                                                             | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters: enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk; IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| equency Ranges  atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz HD+N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range apped Burst Interval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  0.0007% [-103 dB]. 0.0014% [-97 dB]. 0 dB to -100 dB, usable to -138 dB. 2 cycles-65536 cycles.                                                          | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitu  Frequency Range                                                                                       | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-<br>(4-pole Butterworth or 10-pole elliptic if no other filters: enabled).  Fg/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-LEC "A" weighting, per IEC Rec 179, CCIR QPk pt 126-48 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de . <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 10 Hz–30 kHz 30 kHz–50 kHz 40-N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range ual-Sine Ratio Range MD (D/A)" Signal Fam                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.                                                           | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitu Frequency Range Filter Shape                                                                           | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4-(4-pole Butterworth or 10-pole elliptic if no other filters: enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC *A" weighting, per IEC Rec 179, CCIR QPk, IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de . <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k. 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 10 Hz–30 kHz 30 kHz–50 kHz 30 kHz–20kHz) 30 kHz range 60 kHz range 60 kHz range 60 kHz range 10 kHz ran | .10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s)±0.01 dB±0.03 dB±0.10 dB (typically -0.5 dB at 60 kHz).  .0.0007% [-103 dB]0.0014% [-97 dB]0 dB to -100 dB, usable to -138 dB2 cycles-65536 cycles.                                                                       | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitu Frequency Range  THD+N Measurements                                                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters: enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic), 15 (6-pole elliptic), 15 (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk pl EC488 (CDIR), CCIR RMS per AES17, C-message pe IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, 'F' weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de  . <10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 k of 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| atness (1 kHz ref) 20 Hz-20 kHz 10 Hz-30 kHz 30 kHz-50 kHz 110 Hz-30 kHz 30 kHz-50 kHz 110 Hz) 30 kHz range 60 kHz range 60 kHz range 10 kHz range 1 | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.                                                           | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitu Frequency Range  THD+N Measurements                                                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  . F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic),  . ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk I IEC468 (CCIR), CCIR RMS per AES17, C-message per IEEE Sid 743-1978, CCITT per CCITT Rec. 0, 41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de . 10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).  . <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| requency Ranges  latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz Hz–30 kHz 30 kHz–50 kHz Hz–30 kHz ange 60 kHz range 60 kHz range ual-Sine Ratio Range finaped Burst Interval IMD (D/A)" Signal Fam MPTE/DIN Test Signal LF Tone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.                                                           | Flatness (1 kHz ref) 20 Hz–20 kHz                                                                            | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Ampliture Frequency Range  Filter Shape  THD+N Measurements Frequency Range                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk, IEC488 (CCIR), CCIR RMS per AES17, C-message pr IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).  110 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| requency Ranges  latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 10 Hz–30 kHz 30 kHz–50 kHz HD+N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range haped Burst Interval IMD (D/A)" Signal Fam MPTE/DIN Test Signal HF Tone HF Tone CIF/DFD Test Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | .10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s)±0.01 dB±0.03 dB±0.10 dB (typically -0.5 dB at 60 kHz).  .0.0007% [-103 dB]0.0014% [-97 dB]0 dB to -100 dB, usable to -138 dB2 cycles-65536 cycles.  11by 1 .40 Hz-500 Hz2.00 kHz-50 kHz.                                 | Flatness (1 kHz ref) 20 Hz–20 kHz                                                                            | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Ampliture Frequency Range  Filter Shape  THD+N Measurements Frequency Range                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic), 16 (6-pole elliptic), 16 (6-pole elliptic), 16 (6-pole), 20 KIR MS per AES17, C-message pr IEEE Std 743-1978, CCIIT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  1e  - (10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].  - (10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].  - (10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (            |
| atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 10 Hz–30 kHz 30 kHz–50 kHz 40+N (20Hz–20kHz) 30 kHz range 60 kHz range ual-Sine Ratio Range naped Burst Interval MD (D/A)" Signal Fam MPTE/DIN Test Signal LF Tone HF Tone CIF/DFD Test Signal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | .10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s)±0.01 dB±0.03 dB±0.10 dB (typically -0.5 dB at 60 kHz).  .0.0007% [-103 dB]0.0014% [-97 dB]0 dB to -100 dB, usable to -138 dB2 cycles-65536 cycles.  11by 1 .40 Hz-500 Hz2.00 kHz-50 kHz.                                 | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Ampliture Frequency Range  Filter Shape  THD+N Measurements Frequency Range                                    | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters: enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk y IEC488 (CCIR), CCIR RMS per AES17. C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de  -<10 Hz to 47% of Sample Rate [10 Hz–22.56 kHz at 48 k 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| equency Ranges  atness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz 40-N kHz 40 Hz–30 kHz 30 kHz-50 kHz 40 Hz–20 kHz 40 Hz  | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.  nily  I 40 Hz-500 Hz 2.00 kHz-50 kHz.                    | Flatness (1 kHz ref) 20 Hz–20 kHz                                                                            | High pass Filters  Low pass Filters  Weighting Filters  Warrow Band Amplitu Frequency Range  Filter Shape  THD+N Measurements Frequency Range  High pass Filters                   | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>8</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk IEC488 (CCIR), CCIR RMS per AES17, C-message pt IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de  . <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 k; 10-pole, Q=19 (BW = 5.3% of f <sub>0</sub> ).  . <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].  . <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole), |
| requency Ranges                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.  nily  I 40 Hz-500 Hz 2.00 kHz-50 kHz.                    | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Warrow Band Amplitu Frequency Range  Filter Shape  THD+N Measurements Frequency Range  High pass Filters                   | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters : enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic), 16 (6-pole elliptic), 16 (6-pole elliptic), 17 (6-pole elliptic), 18 (6-pole elliptic), 19 (6-pole), 19 (19 Fax 19             |
| requency Ranges  latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 30 kHz–50 kHz Hz–30 kHz 30 kHz–50 kHz 30 kHz-20kHz) 30 kHz range 60 kHz range 60 kHz range 10 kHz  | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s).  . ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz).  . 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles.  nily  I 40 Hz-500 Hz 2.00 kHz-50 kHz.                    | Flatness (1 kHz ref)  20 Hz–20 kHz                                                                           | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitue Frequency Range Filter Shape  THD+N Measurements Frequency Range  High pass Filters  Low pass Filters | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>8</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic).  ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk   EC488 (CCIR), CCIR RMS per AES17, C-message pt IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, Harmonic weighting.  de  <10 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].  10-pole, Q=19 (BW = 5.3% of f <sub>o</sub> ).  110 Hz to 47% of Sample Rate [10 Hz-22.56 kHz at 48 ks/s].  110 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 the (4-pole Butterworth).  F <sub>8</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (6-pole elliptic), 18 (6-pole elliptic), 18 (8-pole PR).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| requency Ranges  latness (1 kHz ref) 20 Hz–20 kHz 10 Hz–30 kHz 10 Hz–30 kHz 30 kHz–50 kHz Hb-N (20Hz–20kHz) 30 kHz range 60 kHz range 6 | . 10 Hz-30 kHz (65.536 ks/s), or 10 Hz-60 kHz (131.072 ks/s) ±0.01 dB ±0.03 dB ±0.10 dB (typically -0.5 dB at 60 kHz) 0.0007% [-103 dB] 0.0014% [-97 dB] 0 dB to -100 dB, usable to -138 dB 2 cycles-65536 cycles 11 . 40 Hz-500 Hz 2.00 kHz-50 kHz 80 Hz-2 kHz 4.50 kHz to >50 kHz. | Flatness (1 kHz ref) 20 Hz–20 kHz                                                                            | High pass Filters  Low pass Filters  Weighting Filters  Narrow Band Amplitue Frequency Range Filter Shape  THD+N Measurements Frequency Range  High pass Filters  Low pass Filters | . <10 Hz 4-pole, 22 Hz 4-pole, 100 Hz 4-pole, 400 Hz 4 (4-pole Butterworth or 10-pole elliptic if no other filters enabled).  F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 (10-pole, 12-pole), 20 kHz (17 kHz), 20 kHz (17 kHz), 20 kHz (18 kHz), 20 kHz (18 kHz), 20 kHz (18 kHz), 21 kHz (18 kHz), 2            |

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | nents                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Quasi-Anechoic Aco                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | <10 Hz to 47% of Sample Rate [10 Hz-23.0 kHz at 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Signals                                                                                                                                                                                                                                                                  | Four pink sequences, four white sequences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.01% of reading or 0.0001% of Sample Rate, whichever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                          | dc to Sample Rate ÷ 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Sequence Length                                                                                                                                                                                                                                                          | 32767 samples or 131071 samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 0.003% of reading or 0.0001% of Sample Rate, whichever                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Arbitrary and Multito                                                                                                                                                                                                                                                    | ne Waveforms ("Arb Wfm")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | is greater.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Signal                                                                                                                                                                                                                                                                   | Determined by the associated file specified in the panel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Ouasi-Anachoic Aco                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ustical Tester with "MLS" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | •                                                                                                                                                                                                                                                                        | drop-down box.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Four pink sequences, four white sequences.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Frequency Range                                                                                                                                                                                                                                                          | dc to Sample Rate ÷ 2.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (Sample Rate ÷ 2000) to (Sample Rate ÷ 2).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Length                                                                                                                                                                                                                                                                   | 256 points-16384 points per channel. Utility is provided to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ax) 1.465 Hz at 48.0 ks/s.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | •                                                                                                                                                                                                                                                                        | prepare waveform from user specified frequency, ampli-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 32767 or 131071 samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                          | tude, and phase data.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Acquisition Length                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 32707 OF 131071 Samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Frequency Resolution                                                                                                                                                                                                                                                     | Sample Rate ÷ Length [2.93 Hz at 48 ks/s for a waveform                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Multitone Audio Anal                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | yzer with "FASTTEST" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          | 16384 points in length].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Level vs frequency (Response), Total distortion vs frequen-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                          | es (Length / 2) –1 [8191 for Length = 16384].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | cy, Noise vs frequency, Phase vs frequency, Crosstalk vs<br>frequency, Masking curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Dither Probability Distribution                                                                                                                                                                                                                                          | Triangular or rectangular; pseudo random, independent fo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| requency Resolution .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | (Sample Rate ÷ Transform Length) [1.465 Hz with f <sub>s</sub> = 48 ks/s & Transform Length = 32768].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Spectral Distribution                                                                                                                                                                                                                                                    | each channel Flat (white) or Shaped (+6 dB/oct).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Distortion                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | · · · · · · · · · · · · · · · · · · ·                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Amplitude                                                                                                                                                                                                                                                                | 8 bit–24 bit, or OFF.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Pre-Emphasis Filters                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| DIGITAL SIGNAL GEI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | NERATOR (SYS-2720 and SYS-2722 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Filter Shape                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| nterface Signal Char                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | racteristics                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                          | ±0.02 dB, 10 Hz to 45% of Sample Rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Balanced XLR (AES/EBU per AES3-r1997), Dual                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Residual Distortion                                                                                                                                                                                                                                                      | ≤0.00003% [–130 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| output i oiiiidts                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Connector XLR, Unbalanced BNC (SPDIF-EIAJ per IEC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60958), Dual Connector BNC, Optical (Toslink®) per IEC-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | DIGITAL ANALYZER                                                                                                                                                                                                                                                         | (SYS-2720 and SYS-2722 only)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 60958, General purpose parallel, or Serial interface to chip                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Digital Interface Sign                                                                                                                                                                                                                                                   | al Measurements                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | via optional PSIA-2722.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Input Sample Rate                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sample Rate ("SR")                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          | 28 kHz-200 kHz for fully specified performance; typically                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | nally#                                                                                                                                                                                                                                                                   | 28 kHz–200 kHz for fully specified performance; typically <24 kHz–216 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Electrical Formats .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 28 kHz-200 kHz for fully specified performance;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Accuracy                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | usable from 8 kHz–216 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                          | ±(0.0003% + 1 digit) [±3 PPM].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Optical Format                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 28 kHz–108 kHz for fully specified performance; usable                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                          | ±(0.0001% + 1 digit) [±1 PPM].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | down to 8 kHz. Upper rate is limited by Toslink® technology.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Input Amplitude                                                                                                                                                                                                                                                          | ±(0.0001/6 + 1 digit) [±1 FF Ni].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          | 0 Vpp-10.00 Vpp, ±(5% + 25 mV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ±0.0002% [±2 PPM], lockable to external reference.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                          | 0 Vpp=10.00 Vpp, ±(5% + 25 HiV).<br>0 Vpp=2.5 Vpp, ±(5% + 6 mV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Output Impedance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          | Displays output voltage of Toslink® receiver (not linearly                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Balanced (XLR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Ориса                                                                                                                                                                                                                                                                    | related to optical input power).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Unbalanced (BNC)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Nominally 75 Ω.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Output to Input Delay                                                                                                                                                                                                                                                    | Measures propagation from the rear panel AES/EBU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Residual Jitter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤600 ps (700 Hz–100 kHz analyzer bandwidth),                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Output to input Delay                                                                                                                                                                                                                                                    | Reference Output to the input.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ≤1.0 ns (50 Hz–100 kHz analyzer bandwidth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Range                                                                                                                                                                                                                                                                    | 12.7 to +115.1 UI [-10% to +90% of frame] in seconds,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Embedded Signal Ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | neration Encoding is selectable 8-24 bit Linear, µ-Law, or A-Law                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                          | 60 ns resolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | neration Encoding is selectable 8–24 bit Linear, μ-Law, or A-Law<br>n Characteristics (all sine wave variants)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sine Family Commo                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                          | 60 ns resolution.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Sine Family Common<br>Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Characteristics (all sine wave variants)10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>23</sup> [0.006 Hz at 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.<br>≤600 ps "700 Hz–100 kHz" bandwidth,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .<br>Flatness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .<br>Flatness<br>Harmonics/Spurious Produc                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ≠ 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB. ts ≤0.00001% [–160 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .<br>Flatness<br>Harmonics/Spurious Product<br>Variable Phase Sine                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [–160 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV).  0 Vpp–2.5 Vpp, ±(8% + 12 mV).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .<br>Flatness<br>Harmonics/Spurious Produc<br>Variable Phase Sine<br>Phase Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [–160 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV) 0 Vpp–2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution<br>Flatness<br>Harmonics/Spurious Product<br>Variable Phase Sine<br>Phase Range<br>Sine + Offset                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>to</sup> [0.006 Hz at 48 ks/s] ± 0.001 dB. ts ≤ 0.000001% [–160 dB].  Wave ±180 deg.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV).  0 Vpp–2.5 Vpp, ±(8% + 12 mV).  y . 19.66 ms / 1.572,864 samples.  asurements with "ANALYZER" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sine Family Commoi<br>Frequency Range<br>Frequency Resolution<br>Flatness<br>Harmonics/Sprirous Produc<br>Variable Phase Sine<br>Phase Range<br>Sine + Offset<br>Offset Amplitude                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB. tds ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>S</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV).  0 Vpp–2.5 Vpp, ±(8% + 12 mV).  y . 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution .<br>Flatiness .<br>Harmonics/Spurious Produc<br>Variable Phase Sine<br>Phase Range<br>Sine + Offset<br>Offset Amplitude .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ± 0.001 dB ± 0.000001% [-160 dB].  Wave ±180 deg ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memore Embedded Audio Mei Wideband Level/Amp Range                                                                                                                  | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples. asurements with "ANALYZER" DSP program  littude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to -140 dBF <sub>s</sub> ).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution<br>Flatness<br>Harmonics/Spurious Produc<br>Variable Phase Sine<br>Phase Range<br>Sine + Offset<br>Offset Amplitude<br>Sine Burst and Shap                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ÷ 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ed Sine Burst 2 cycles-65536 cycles.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memore Embedded Audio Mei Wideband Level/Amp Range                                                                                                                  | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV) 0 Vpp–25 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  illitude −120 dBF <sub>S</sub> to 0 dBF <sub>S</sub> (usable to −140 dBF <sub>S</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz–20.2 kHz at                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sine Family Common Frequency Range Frequency Resolution Flatlaness -lamnonics/Spurious Product Variable Phase Sine Phase Range Sine + Offset Disne Hamplitude Sine Burst and Shap Interval Burst On                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ± 0.001 dB ± 0.000001% [-160 dB].  Wave ±180 deg ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memore Embedded Audio Mei Wideband Level/Amp Range                                                                                                                  | 60 ns resolution.  ≤600 ps "700 Hz–100 kHz" bandwidth, ≤1.0 ns "50 Hz–100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp–10.00 Vpp, ±(10% + 50 mV).  0 Vpp–2.5 Vpp, ±(8% + 12 mV).  y . 19.66 ms / 1.572,864 samples.  asurements with "ANALYZER" DSP program  bitude  −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ).  10 Hz to 45.8% of Sample Rate, [10 Hz–20.2 kHz at 44.1 ks/s], [10 Hz–22.0 kHz at 44.0 kHz at 48.58], [10 Hz–44.0 kHz at 48.58], [10 Hz–42.0 kHz at 48.58], [10 Hz–44.0 kHz at 48.58], [10 Hz–42.0 kHz at 48.58], [10 Hz–42.0 kHz at 48.58], [10 Hz–42.0 kHz at 48.58], [10 Hz–44.0 kHz at 48.58], [10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Sine Family Common<br>Frequency Range<br>Frequency Resolution<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB. cts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>S</sub> . ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memon Embedded Audio Me Wideband Level/Amp Range Frequency Range                                                                                                    | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Illitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 441 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sine Family Common Frequency Range Frequency Resolution latness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>th</sup> [0.006 Hz at 48 ks/s] ± 0.001 dBts ≤ 0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> ded Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sine Family Common requency Range Frequency Resolution Filatness Hammonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap interval Surst On Square Wave Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ≥21 [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-25 Vpp, ±(8% + 12 mV). y. 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  bilitude −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.5 ks/s], [10 Hz-22.0 kHz at 45.5 ks/s] ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sine Family Common Frequency Range Frequency Resolution Flatlaness -lamnonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveforn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2²¹ [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ved Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Me Wideband Level/Amp Range Frequency Range Accuracy Flatness                                                                                  | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  littude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Sine Family Common requency Range requency Range requency Resolution -latness -larmonics/Spurious Produc variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap nterval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate ≠ 2° [0.006 Hz at 48 ks/s] ±0.001 dB ± ≤ 0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>S</sub> ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Me Wideband Level/Amp Range Frequency Range Accuracy Flatness                                                                                  | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Illitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to -140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20 2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution . Halmess Harmonics/Spurious Productariable Phase Sine Phase Range Sine + Offset Offset Amplitude . Sine Burst and Shapnterval . Burst On Square Wave Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2³ [0.006 Hz at 48 ks/s] ±0.001 dB ±0.001 dB ±0.00001% [-160 dB].  Wave ±180 deg ±180 deg Sine amplitude + [offset amplitude] ≤100% F <sub>s</sub> ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Me Wideband Level/Amp Range Frequency Range Accuracy Flatness                                                                                  | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  littude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole) butterworth, or 10-pole elliptic if no other filters are                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sine Family Common requency Range requency Resolution laidness Harmonics/Spurious Produc /ariable Phase Sine Phase Range Sine + Offset Sine Burst and Shap nterval Burst On Square Wave                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>23</sup> [0.006 Hz at 48 ks/s] ± 0.001 dB. sts ≤ 0.000001% [-160 dB].  Wave ±180 deg Sine amplitude + [offset amplitude] ≤ 100% F <sub>8</sub> . sed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Mee Wideband Level/Amp Range Frequency Range  Accuracy Flatness High pass Filters                                                              | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  IIItude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB ±0.01 dB ≤10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole) butterworth, or 10-pole elliptic if no other filters ar enabled).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Sine Family Common requency Range requency Resolution relations requency Resolution relations reading relations rela | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  red Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Mee Wideband Level/Amp Range Frequency Range  Accuracy Flatness High pass Filters                                                              | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Illitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to -140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled) F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kHz                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sine Family Common requency Range requency Range requency Resolution -latness -larmonics/Spurious Produc variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap nterval                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  red Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps "700 Hz-100 kHz" bandwidth, ≤1.0 ns "50 Hz-100 kHz" bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.2 ks/s], [10 Hz-22.0 kHz at 44.2 ks/s], [10 Hz-40.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, (4-pole), 100 Hz (4-pole), 400 Hz (4-pole) Butterworth, or 10-pole elliptic if no other filters are enabled) Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kt (6-pole elliptic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution . Flatness . Harmonics/Spurious Productariable Phase Sine Phase Range . Sine + Offset . Offset Amplitude . Sine Burst and Shap mterval . Burst On Square Wave Frequency Range                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2° [0.006 Hz at 48 ks/s] ±0.001 dB ±0.001 dB ±180 deg ±180 deg ±180 deg 1180 deg 1180 deg ±180 deg 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz 42 verorns 3.00 kHz to (47% of Sample Rate –1/2 IM freq.) 80 Hz-2.00 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memor Embedded Audio Mee Wideband Level/Amp Range Frequency Range  Accuracy Flatness High pass Filters                                                              | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB ±0.01 dB ±0.01 dB. (4-pole), 100 Hz (4-pole), 400 Hz (4-pole) Butterworth, or 10-pole elliptic if no other filters ar enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 ki (6-pole elliptic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Sine Family Common requency Range Frequency Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>th</sup> [0.006 Hz at 48 ks/s] ± 0.001 dBts ≤ 0.000001% [-160 dB].  Wave ±180 deg ≤ sine amplitude + [offset amplitude] ≤ 100% F <sub>s</sub> ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤ 1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sine Family Common Frequency Range Frequency Resolution Frequency Resolution Frequency Resolution Frequency Resolution Frequency Resolution Frequency Frequency Frequency Range Frequency Range Frequency Range CCIF and DFD IMD W Center Frequency Range M Frequency Range Distortion/Spurious                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.  s. Determined by Sample Rate ≤0.000001% [-160 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  ∨ Vpp-10.00 Vpp, ±(10% + 50 mV) ∨ Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic) in on other filters ar enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 ki (6-pole elliptic) "weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, H                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sine Family Common Frequency Range Frequency Resolution Flatness Harmonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveforn Joper Tone Range Lower Tone Range Court Tone Range Court Tone Range M Frequency Range M Frequency Range M Frequency Range M Frequency Range Sing Mayer Sine Frequenci Sistortion/Spurious Amplitude Ratio                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>th</sup> [0.006 Hz at 48 ks/s] ± 0.001 dBts ≤ 0.000001% [-160 dB].  Wave ±180 deg ≤ sine amplitude + [offset amplitude] ≤ 100% F <sub>s</sub> ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤ 1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memory Embedded Audio Meword Mideband Level/Amp Range Frequency Range  Accuracy Flatness  High pass Filters  Low pass Filters  Weighting Filters  Weighting Filters | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Sine Family Common requency Range requency Range requency Resolution latness lamonics/Spurious Produc Arriable Phase Sine Phase Range Sine + Offset Diffset Amplitude Sine Burst and Shap nterval Burst On Square Wave requency Range SMPTE/DIN Waveforn Jupper Tone Range COIF and DFD IMD V Center Frequency Range M Frequency Range DIM IMD Waveform Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2° [0.006 Hz at 48 ks/s] ±0.001 dB ±0.001 dB ±180 deg ±180 deg ±180 deg 1180 deg 1180 deg 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz 40 Hz-500 Hz 80 Hz-2.00 kHz 80 Hz-2.00 kHz 50 Determined by Sample Rate ≤0.000001% [-160 dB] 41 (squarewave:sinewave).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ksls], [10 Hz-22.0 kHz at 48 ksls], [10 Hz-44.0 kHz at 96 ksls] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection)<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled)Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic)ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per CCIR Rec .468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sine Family Common requency Range - requency Range - requency Resolution .  latness                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>21</sup> [0.006 Hz at 48 ks/s] ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave ±180 deg Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.  s. Determined by Sample Rate ≤0.000001% [-160 dB].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Residual Jitter  Digital Interface Anal AES/EBU Input Voltage Balanced Unbalanced Acquisition time / memory Embedded Audio Meword Mideband Level/Amp Range Frequency Range  Accuracy Flatness  High pass Filters  Low pass Filters  Weighting Filters  Weighting Filters | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1.572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled) F₂/z (maximum bandwidth), 20 kHz (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Sine Family Common requency Range - requency Range - requency Resolution - laintess - la | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2 <sup>th</sup> [0.006 Hz at 48 ks/s] ± 0.001 dBts ≤ 0.000001% [-160 dB].  Wave ±180 deg ≤ine amplitude + [offset amplitude] ≤ 100% F <sub>s</sub> ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.  5. Determined by Sample Rate ≤0.00001% [-160 dB] 4.1 (squarewave.sinewave) Pink, White, Burst, USASI.                                                                                                                                                                                                                                                                                                                                                                                                                                              | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Nittude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ksls], [10 Hz-22.0 kHz at 48 ksls], [10 Hz-44.0 kHz at 96 ksls] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection)<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled)Fy2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic)ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per CCIR Rec .468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution Flatness Harmonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Wavefort Joper Tone Range Cover Tone Range Cover Tone Range M Frequency Range M Frequency Range M Frequency Range M Frequency Range Signare/Sine Frequence Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2° [0.006 Hz at 48 ks/s] ±0.001 dB ± ≤ 0.000001% [-160 dB].  Wave ±180 deg Sine amplitude + [offset amplitude] ≤100% F <sub>8</sub> Sine amplitude + [offset amplitude] ≤100% F <sub>8</sub> 3 to the state of the sample Rate of the sample Rate 2 cycles-6556 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.  s Determined by Sample Rate ≤0.00001% [-160 dB] 4:1 (squarewave:sinewave) Pink, White, Burst, USASI Low level staircase waveform for D/A linearity testing.                                                                                                                                                                                                                                                                                                     | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV). 0 Vpp-2.5 Vpp, ±(8% + 12 mV). 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Illitude  1120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ). 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44 lsks], [10 Hz-22.0 kHz at 44 ksks], [10 Hz-22.0 kHz at 48 ksfs], [10 Hz-44.0 kHz at 96 ks/s].  ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection).  <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled).  LF (2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 ki (6-pole elliptic).  ANSI-IEC "A' weighting, per IEC Rec 179, CCIR QPk per CIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Sid 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting.  1 −141 dBF <sub>s</sub> unweighted, −144 dBF <sub>s</sub> A-weighted, −144 dBF <sub>s</sub> CCIR QPk, 130 dBF <sub>s</sub> CCIR QPK, |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution Flatness Harmonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Wavefort Joper Tone Range Cover Tone Range Cover Tone Range M Frequency Range M Frequency Range M Frequency Range M Frequency Range Signare/Sine Frequence Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude + [offset amplitude] ≤100% Fs.  led Sine Burst  2 cycles-65536 cycles.  1 to (number of interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a. 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  s. Determined by Sample Rate  ≤0.000001% [-160 dB].  4.1 (squarewave.sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-                                                                                                                                                                                                                                                                                                                    | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Intude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to -140 dBF <sub>s</sub> ) 10 Hz to 45,8% of Sample Rate, [10 Hz-20 2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kt (6-pole elliptic) ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -144 dBF <sub>s</sub> CCIR RMS, -130 dBF <sub>s</sub> CCIR RMS, -130 dBF <sub>s</sub> CCIR RMS, -142 dBF <sub>s</sub> CVIR RMS, -142 dBF <sub>s</sub> 20 kHz LP,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Sine Family Common requency Range Frequency Range Frequency Resolution Ilatiness .                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | n Characteristics (all sine wave variants) 10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s] Sample Rate + 2³ [0.006 Hz at 48 ks/s] ±0.001 dBts ≤0.000001% [-160 dB].  Wave ±180 deg ±180 deg Sine amplitude + [offset amplitude] ≤100% Fs ed Sine Burst 2 cycles-65536 cycles 1 to (number of Interval cycles minus 1) ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate 2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s] 40 Hz-500 Hz.  Vaveforms a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.) 80 Hz-2.00 kHz.  5 Determined by Sample Rate ≤0.00001% [-160 dB] 4:1 (squarewave:sinewave) Pink, White, Burst, USASI Low level staircase waveform for D/A linearity testing Produces a maximum amount of dala-induced jitter on low-bandwidth transmission links.                                                                                                                                                                                                                                                                                                                       | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1.572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled) FyZ (maximum bandwidth), 20 kHz (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk per CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. ) −141 dBF <sub>s</sub> unweighted, −144 dBF <sub>s</sub> A-weighted, −144 dBF <sub>s</sub> CCIR RMS, −130 dBF <sub>s</sub> CCIR CPk, −143 dBF <sub>s</sub> 15 kHz LP, −145 dB                                                                                                   |
| Sine Family Common requency Range requency Range requency Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2 <sup>12</sup> [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  ed Sine Burst  2 cycles-65536 cycles.  1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  s Determined by Sample Rate  ≤0.000001% [-160 dB].  411 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth maximssission links.  Two sinewaves phased for reinforcement with normal polarity.                                                                                                                                                                                                 | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  ∨ Vpp-10.00 Vpp, ±(10% + 50 mV) ∨ Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Illitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44 ks/s], [10 Hz-22.0 kHz at 44 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters at enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic). ANSI-HEC "A" weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, H Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -144 dBF <sub>s</sub> A-weighted, -144 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR TMS, -139 dBF <sub>s</sub> "F" weighting, -152 dBF <sub>s</sub> CCITT, -139 dBF <sub>s</sub> "F" weighting, -152 dBF <sub>s</sub> CCITT, -139 dBF <sub>s</sub> "F" weighting, -152 dBF <sub>s</sub> CCITT,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| Sine Family Common requency Range requency Range requency Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude +  offset amplitude  ≤100% F <sub>8</sub> .  edd Sine Burst  2 cycles-65536 cycles.  1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  5 Determined by Sample Rate  ≤0.00001% [-160 dB].  4:1 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.  Two sinewaves phased for reinforcement with normal polarity.  A single binary one value "walked" from LSB to MSB.                                                                                                                                                          | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Initial basurements with "ANALYZER" DSP program  Initial basur                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sine Family Common requency Range requency Range requency Resolution latness lamonics/Spurious Produc variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap nterval Surst On Square Wave requency Range SMPTE/DIN Waveforn Joper Tone Range Lower Tone Range Colf and DFD IMD V Center Frequency Range M Frequency Range DIM IMD Waveforn Square/Sine Frequencies Distortion/Spurious Namplitude Ratio Noise Types Special Signals Monotonicity Lorest Validing Ones Malking Ones Malking Ones Malking Ones Malking Ceros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude + [offset amplitude] ≤100% Fs.  led Sine Burst  2 cycles-65536 cycles.  1 to (number of interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  //aveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  s. Determined by Sample Rate  ≤0.000001% [-160 dB].  4.1 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.  Two sinewaves phased for reinforcement with normal polarity.  A single binary one value "walked" from LSB to MSB.  A single binary zero value "walked" from LSB to MSB.                                                                                                              | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(6% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Intude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45,8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ksls], [10 Hz-22.0 kHz at 48 ksls], [10 Hz-44.0 kHz at 96 ksls] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters at enabled) FyZ (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic) ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. 0.41, "F' weighting corresponding to 15 phon loudness contour, H Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -140 dBF <sub>s</sub> CCIR RMS, -130 dBF <sub>s</sub> CCIR QPk, -143 dBF <sub>s</sub> 15 kHz LP, -143 dBF <sub>s</sub> 15 kHz LP, -131 dBF <sub>s</sub> C Message.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution Flatness Harmonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveforn Upper Tone Range Lower Tone Range CCIF and DFD IMD V Center Frequency Range M Frequency Range DIM IMD Waveforn Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotonicity J-Test Walkling Ones Walkling Ones Walking Ones Walking Zeros                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude +  offset amplitude  ≤100% F <sub>8</sub> .  edd Sine Burst  2 cycles-65536 cycles.  1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  5 Determined by Sample Rate  ≤0.00001% [-160 dB].  4:1 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.  Two sinewaves phased for reinforcement with normal polarity.  A single binary one value "walked" from LSB to MSB.                                                                                                                                                          | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  ∨pp-10.00 Vpp, ±(10% + 50 mV) ∨ Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection)<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic) ANSI-IEC "A' weighting, per IEC Rec 179, CCIR OPk per CIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Sid 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -144 dBF <sub>s</sub> A-weighted, -144 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR QPk, -143 dBF <sub>s</sub> CRIR QPk, -143 dBF <sub>s</sub> CRIR QPk, -143 dBF <sub>s</sub> C Message 10 Hz to 40% of Sample Rate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sine Family Common Frequency Range Frequency Range Frequency Resolution Flatness Harmonics/Spurious Produc Variable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap Interval Burst On Square Wave Frequency Range SMPTE/DIN Waveforn Upper Tone Range Lower Tone Range CCIF and DFD IMD V Center Frequency Range DIM IMD Waveforn Square/Sine Frequencies Distortion/Spurious Amplitude Ratio Noise Types Special Signals Monotoity J-Test Volarity Walking Ones Walking Jeros Constant Value (Digital of Walking Jeros Constant Value (Digital of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude + [offset amplitude] ≤100% Fs.  led Sine Burst  2 cycles-65536 cycles.  1 to (number of interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  //aveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  s. Determined by Sample Rate  ≤0.000001% [-160 dB].  4.1 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.  Two sinewaves phased for reinforcement with normal polarity.  A single binary one value "walked" from LSB to MSB.  A single binary zero value "walked" from LSB to MSB.                                                                                                              | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Initude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to -140 dBF <sub>s</sub> ) 10 Hz to 45,8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection) <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters ar enabled) F <sub>g</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kh (6-pole elliptic) ANSI-IEC 'A' weighting, per IEC Rec 179, CCIR QPk per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, 'F' weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -144 dBF <sub>s</sub> A-weighted, -140 dBF <sub>s</sub> CCIR QPk, -130 dBF <sub>s</sub> CCIR QMS, -130 dBF <sub>s</sub> CCIR QPk, -130 dBF <sub>s</sub> CCIR QPk, -130 dBF <sub>s</sub> CRIR TMS, -130 d                                             |
| Sine Family Common requency Range requency Range requency Resolution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2° [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude +  offset amplitude  ≤100% F <sub>S</sub> .  edd Sine Burst  2 cycles-65536 cycles.  1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  5 Determined by Sample Rate  ≤0.00001% [-160 dB].  4:1 (squarewave sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links.  Two sinewaves phased for reinforcement with normal polarity.  A single binary zero value "walked" from LSB to MSB.  o) 32-bit resolution when using triangular dither.  Pseudo-random binary states of all bits.  Passes the signal from the rear panel Ref Input. Accepts | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  ∨pp-10.00 Vpp, ±(10% + 50 mV) ∨ Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1,572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 44.8 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection)<10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters are enabled) F₂/2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kl (6-pole elliptic) ANSI-IEC "A' weighting, per IEC Rec 179, CCIR OPk per CIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Sid 743-1978, CCITT per CCITT Rec. 0.41, "F" weighting corresponding to 15 phon loudness contour, HI Harmonic weighting. ) -141 dBF <sub>s</sub> unweighted, -144 dBF <sub>s</sub> A-weighted, -144 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR QPk, -142 dBF <sub>s</sub> CCIR QPk, -143 dBF <sub>s</sub> CRIR QPk, -143 dBF <sub>s</sub> CRIR QPk, -143 dBF <sub>s</sub> C Message 10 Hz to 40% of Sample Rate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Sine Family Common requency Range requency Range requency Resolution latness lamonics/Spurious Produc Arriable Phase Sine Phase Range Sine + Offset Offset Amplitude Sine Burst and Shap niterval Just On Square Wave requency Range SMPTE/DIN Wavefort Jupper Tone Range Lower Tone Range Lower Tone Range Lower Tone Range Lower Tone Range Sine Frequency Range M Frequency Range M Frequency Range Sine Burst and Shap niterval Jupper Tone Range Lower Tone | n Characteristics (all sine wave variants)  10 Hz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  Sample Rate + 2 <sup>12</sup> [0.006 Hz at 48 ks/s].  ±0.001 dB.  ts ≤0.000001% [-160 dB].  Wave  ±180 deg.  Sine amplitude +  offset amplitude  ≤100% F <sub>s</sub> .  red Sine Burst  2 cycles-65536 cycles.  1 to (number of Interval cycles minus 1).  ≤1 Hz to 1/6 Sample Rate. Frequencies are limited to even integer sub-multiples of the Sample Rate.  m  2 kHz to 47% of Sample Rate [22.56 kHz at 48 ks/s].  40 Hz-500 Hz.  Vaveforms  a 3.00 kHz to (47% of Sample Rate −1/2 IM freq.).  80 Hz-2.00 kHz.  s Determined by Sample Rate  ≤0.00001% [-160 dB].  4.1 (squarewave:sinewave).  Pink, White, Burst, USASI.  Low level staircase waveform for D/A linearity testing.  Produces a maximum amount of data-induced jitter on low-bandwidth transmission links  Two sinewaves phased for reinforcement with normal polarity.  A single binary one value "walked" from LSB to MSB.  c) 32-bit resolution when using triangular dither.  Pseudo-random binary states of all bits.                                                | Residual Jitter                                                                                                                                                                                                                                                          | 60 ns resolution.  ≤600 ps '700 Hz-100 kHz' bandwidth, ≤1.0 ns '50 Hz-100 kHz' bandwidth.  yzer with "INTERVU" DSP program  0 Vpp-10.00 Vpp, ±(10% + 50 mV) 0 Vpp-2.5 Vpp, ±(8% + 12 mV). y 19.66 ms / 1.572,864 samples.  asurements with "ANALYZER" DSP program  Ilitude −120 dBF <sub>s</sub> to 0 dBF <sub>s</sub> (usable to −140 dBF <sub>s</sub> ) 10 Hz to 45.8% of Sample Rate, [10 Hz-20.2 kHz at 44.1 ks/s], [10 Hz-22.0 kHz at 48 ks/s], [10 Hz-44.0 kHz at 96 ks/s] ±0.01 dB ±0.01 dB ±0.01 dB, 15 Hz-22 kHz (<10 Hz high-pass filter selection). <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth, or 10-pole elliptic if no other filters at enabled) FyZ (maximum bandwidth), 20 kHz (6-pole elliptic), 15 k (6-pole elliptic) ANSI-IEC "A" weighting, per IEC Rec 179, CCIR QPk pe CCIR Rec. 468, CCIR RMS per AES17, C-message per IEEE Std 743-1978, CCITT per CCITT Rec. O.41, "F" weighting corresponding to 15 phon loudness contour, H Harmonic weighting. ) −141 dBF <sub>s</sub> unweighted, −144 dBF <sub>s</sub> A-weighted, −144 dBF <sub>s</sub> CCIR RMS, −130 dBF <sub>s</sub> CCIR RMS, −130 dBF <sub>s</sub> CCIR kHz LP, −143 dBF <sub>s</sub> 15 kHz LP, −144 dBF <sub>s</sub> 20 kHz LP, −145 dBF <sub>s</sub> 15 kHz LP, −145 dBF <sub>s</sub> 15 kHz LP, −147 dBF <sub>s</sub> 15 kHz LP, −148 dBF <sub>s</sub> 15 kHz LP, −149 kHz at 48 ks/s], [10 Hz-19.2 kHz at 48 ks/s],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |

| THD+N Measurement                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Frequency Range                                                                                                                                                                                                                                                                                                                         | <10 Hz to 47% of Sample Rate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|                                                                                                                                                                                                                                                                                                                                         | [10 Hz–19.9 kHz at 44.1 ks/s],<br>[10 Hz–21.6 kHz at 48 ks/s],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | [10 Hz–43.2 kHz at 96 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Residual THD+N                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| High pass Filters                                                                                                                                                                                                                                                                                                                       | <10 Hz (4-pole), 22 Hz (4-pole), 100 Hz (4-pole), 400 Hz (4-pole Butterworth).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Low pass Filters                                                                                                                                                                                                                                                                                                                        | F <sub>S</sub> /2 (maximum bandwidth), 20 kHz (6-pole elliptic), 15 kH (6-pole elliptic).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Weighting Filters                                                                                                                                                                                                                                                                                                                       | Same as Wideband Level/Amplitude.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Frequency Measuren                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Range                                                                                                                                                                                                                                                                                                                                   | 10 Hz to 47% of Sample Rate,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         | [10 Hz-21.0 kHz at 44.1 ks/s],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                                                                                                                                                                                                                                                                                                                         | [10 Hz-23.0 kHz at 48 ks/s],                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                                                                                                                                                                                                                                                                                                                         | [10 Hz-46.0 kHz at 96 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| Embedded Audio, FF                                                                                                                                                                                                                                                                                                                      | T Spectrum Analyzer with "FFT" DSP program<br>(48-bit processing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Acquisition Length                                                                                                                                                                                                                                                                                                                      | 800 samples–4 M samples in 15 steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                         | 256–32768 samples in binary steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Windows                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                                                                                                                                                                                                                                                         | 1–4096 averages in binary steps. Averaging is power-                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                                         | based (frequency domain), or synchronous (time domain).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Distortion Products                                                                                                                                                                                                                                                                                                                     | ≤–160 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Embedded Audio, Mu                                                                                                                                                                                                                                                                                                                      | Iltitone Audio Analyzer with "FASTTEST" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         | (48 bit processing)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                                                                                                                                                                                                                                                         | 512–32768 samples in binary steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                                                                                                                                                                                                                                                         | 512–32768 samples in binary steps.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Measurements                                                                                                                                                                                                                                                                                                                            | Level vs frequency, Total distortion vs frequency, Noise vs<br>frequency, Phase vs frequency, Crosstalk vs frequency,<br>Masking curve.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency Resolution                                                                                                                                                                                                                                                                                                                    | Sample Rate ÷ 2 <sup>15</sup> [1.465 Hz with 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                                                                                                                                                                                                                                                                                         | Sample Rate ÷ 215 [1.465 Hz with 48 ks/s].                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency Correction Ran<br>Distortion                                                                                                                                                                                                                                                                                                  | Sample Rate ÷ 2 <sup>to</sup> [1.465 Hz with 48 ks/s].<br>ge ±3%.<br>≤−140 dB.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Frequency Correction Ran<br>Distortion<br>Embedded Audio, Qu                                                                                                                                                                                                                                                                            | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s].<br>ge ±3%.<br>≤ −140 dB.<br>tasi-Anechoic Acoustical Tester with "MLS" DSP<br>program<br>Four pink sequences and four white sequences, selected                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency Correction Ran<br>Distortion<br>Embedded Audio, Qu                                                                                                                                                                                                                                                                            | Sample Rate ÷ 2 <sup>st</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤−140 dB. tasi-Anechoic Acoustical Tester with "MLS" DSP program                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals                                                                                                                                                                                                                                                                         | Sample Rate ÷ 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤-140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL                                                                                                                                                                                                                                                      | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. rasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u                                                                                                                                                                                                                            | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u                                                                                                                                                                                                                            | Sample Rate ÷ 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤-140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four this esquences, selected by triggering generator MLS setting.  LIARY SIGNALS nints except SYS-2720) Channel A; Channel B als (all units except SYS-2720)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa                                                                                                                                                                                                  | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. sasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B sli «lll units except SYS-2720) Sync Output Trig/Gate Input                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa                                                                                                                                                                                                  | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B sils (all units except SYS-2720) Sync Output Trig/Gate Input (all units except SYS-2720)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXII Generator Monitors (all u  Generator Auxiliary Signal  Analyzer Signal Monitors                                                                                                                                                                     | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤-140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nike sexcept SYS-2720) Channel A; Channel B als (all units except SYS-2720) Sync Output Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXII Generator Monitors (all u  Generator Auxiliary Signa  Analyzer Signal Monitors                                                                                                                                                                      | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B sils (all units except SYS-2720) Sync Output Trig/Gate Input (all units except SYS-2720)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa Analyzer Signal Monitors (S                                                                                                                                                                      | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B als (all units except SYS-2720) Sync Output/Ting/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signal Analyzer Signal Monitors (S  REAR PANEL AUXILI                                                                                                                                                  | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. nasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B als (all units except SYS-2720) Sync Output Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL Generator Monitors (all u  Generator Auxiliary Signal  Analyzer Signal Monitors (S  REAR PANEL AUXILI  Reference Input ("RE                                                                                                                         | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B als (all units except SYS-2720) Sync Output/Ting/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL  Generator Monitors (all u  Generator Auxiliary Signal  Analyzer Signal Monitors (S  REAR PANEL AUXILI  Reference Input ("RE Input formats                                                                                                          | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. lasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B Is (all units except SYS-2720) Sync Output/ Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2720 only Channel 1: Channel 2: Reading SYS-2720 and SYS-2720 only Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS  FIN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa Analyzer Signal Monitors (S REAR PANEL AUXILI Reference Input ("RE Input formats  Reference Output ("Re                                                                                          | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. tasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B sled lurifs except SYS-2720) Sync Output/ Trig/Gate Input (all urifs except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2720 only Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS  FIN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signal Analyzer Signal Monitors (S  REAR PANEL AUXILI Reference Input ("Re Input format  Reference Output ("R  Output format  GENERAL/ENVIRON                                                         | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  lasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B lats (all units except SYS-2720) Sync Output/ Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS  F IN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics AES/EBU (per AES3-r1997).  MENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signal Analyzer Signal Monitors (S  REAR PANEL AUXILI Reference Input ("Re Input format  Reference Output ("R  Output format  GENERAL/ENVIRON                                                         | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ -140 dB.  asi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B sls (all units except SYS-2720) Sync Output Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel A; Channel 2: Reading 1: Reading 2  ARY SIGNALS  F IN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics AES/EBU (per AES3-r1997).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa Analyzer Signal Monitors (S  REAR PANEL AUXIL Reference Input ("Re Input formats  Reference Output ("Re Output format  GENERAL/ENVIRON Power Requirements                                        | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB.  lasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B lats (all units except SYS-2720) Sync Output/ Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS  F IN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics AES/EBU (per AES3-r1997).  MENTAL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signal Analyzer Signal Monitors (S  REAR PANEL AUXILI Reference Input ("RE Input format  Reference Output ("R Output format  Output format  GENERAL / ENVIRON Power Requirements  EMC                  | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB ≤ −140 dB ≤ −140 dB ≤ −140 dB ≤ −150 dB ≤ −140 dB ≤ −150 dB ≤ −1 |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signal Analyzer Signal Monitors (S  REAR PANEL AUXILI Reference Input ("Re Input format  Reference Output ("R  Output format  GENERAL/ENVIRON Power Requirements EMC  Dimensions                      | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB ≤ −140 dB ≤ −140 dB ≤ −140 dB ≤ −150 dB ≤ −140 dB ≤ −150 dB ≤ −1 |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa Analyzer Signal Monitors (S  REAR PANEL AUXIL Reference Input ("RE Input format  GENERAL / ENVIRON Power Requirements EMC  Dimensions Width                                                      | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. lasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B las (all units except SYS-2720) Sync Output/ Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS  FIN") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  KEF OUT") Characteristics AES/EBU (per AES3-1997).  MENTAL 100/120/230/240 Vac (−10%/+6%), 50/60 Hz, 240 VA man Complies with 89/336/EEC, CISPR 22 (class B), and FCC 15 subpart J (class B).                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Frequency Correction Ran Distortion  Embedded Audio, Qu  Signals  FRONT PANEL AUXIL Generator Monitors (all u  Generator Auxiliary Signal  Analyzer Signal Monitors (S  REAR PANEL AUXILI  Reference Input ("RE Input format  Output format  GENERAL/ENVIRON Power Requirements  EMC  Dimensions  Width  Height                         | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ -140 dB Four pink sequences and four white sequences, selected by triggering generator MLS setting.  Four pink sequences and four white sequences, selected by triggering generator MLS setting.  IARY SIGNALS inits except SYS-2720 Channel A; Channel B als (all units except SYS-2720) Sync Output! Trig/Gate Input (all units except SYS-2720) Channel A; Channel B; Reading 2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics 28 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics AES/EBU (per AES3-r1997).  MENTAL 100/120/230/240 Vac (-10%/-6%), 50/60 Hz, 240 VA may Complies with 89/336/EEC, CISPR 22 (class B), and FCC 15 subpart J (class B) 14.6 cm [5.75 inches] bench-top (feet attached) 3U                                                                                                                                                                                                                                                                                                                                                                      |
| Frequency Correction Ran Distortion  Embedded Audio, Qu Signals  FRONT PANEL AUXIL Generator Monitors (all u Generator Auxiliary Signa Analyzer Signal Monitors (S  REAR PANEL AUXIL Reference Input ("Re Input formats  Reference Output ("Re Output format  GENERAL/ENVIRON Power Requirements  EMC  Dimensions  Width  Height  Depth | Sample Rate + 2 <sup>th</sup> [1.465 Hz with 48 ks/s]. ge ±3% ≤ −140 dB. nasi-Anechoic Acoustical Tester with "MLS" DSP program Four pink sequences and four white sequences, selected by triggering generator MLS setting.  LIARY SIGNALS nits except SYS-2720) Channel A; Channel B alis (all units except SYS-2720) Sync Output Trig/Gate linput (all units except SYS-2720) Channel A; Channel B; Reading SYS-2720 and SYS-2722 only) Channel 1: Channel 2: Reading 1: Reading 2  ARY SIGNALS FIN") Characteristics 26 kHz-200 kHz AES/EBU, NTSC, PAL, or SECAM video or 8 kHz-10 MHz square wave.  REF OUT") Characteristics AES/EBU (per AES3+1997).  MENTAL 100/120/230/240 Vac (−10%/+6%), 50/60 Hz, 240 VA may. Complies with \$93/336/EEC, CISPR 22 (class B), and FCC 15 subpart J (class B) 41.9 cm [16.5 inches] 41.9 cm [16.5 inches] 14.6 cm [5.75 inches] bench-lop (feet attached) 3U [5.25 inches] rack-mount.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |



**The 2700 series** is available in four models to test analog signals, digital signals or both (dual domain).

**SYS-2722** offers analog and digital inputs and outputs, DSP analysis of both digital and internally-converted analog signals, DSP-generated digital and analog signals, and low-distortion, hardware-implemented generation and analysis for analog signals. It is a true dual domain instrument.

**SYS-2720** offers digital input and output and DSP generation and analysis of digital signals. It has no analog I/O capabilities.

**SYS-2712** offers analog inputs and outputs, DSP analysis of internally-converted analog signals, DSP-generated analog signals, and low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

**SYS-2702** offers analog input and output, with low-distortion hardware-implemented signal generation and analysis. It has no digital I/O capabilities.

The GPIB option adds an IEEE-488 interface to the instrument.

Three major internal analog options may be fitted to all instruments except the digital-only SYS-2720. Note that some BUR- and IMD-type capabilities are already provided in DSP generation and analysis for SYS-2722 and SYS-2712.

The **BUR** option adds analog-domain generation of burst sine waves with controllable burst duration, interval and amplitude between bursts. It also includes analog-generated square waves to 20 kHz, analog random and pseudorandom white and pink noise, and bandpass-filtered pink noise.

The IMD option tests analog-domain devices for intermodulation distortion to the SMPTE/DIN, CCIF and DIM/TIM standards.

The **W&F** option measures analog wow & flutter to the IEC/DIN, NAB, JIS, and scrape flutter standards, weighted or unweighted.

A 2700 series **APIB** interface connects the instrument to your PC, and is included with all models, except the GPIB option. APIB is available in your choice of an ISA, PCI or PCMCIA PC card.

Each instrument except the digital-only SYS-2720 can accept up to seven analog filter option modules, selectable from a large assortment of lowpass, bandpass and psophometric weighting filters. Other external accessories include the **PSIA-2722** Programmable Serial Interface Adapter for connecting to devices that use non-standard serial interfaces, the **SWR-2122** family of high-performance signal switchers/multiplexers and the **DCX-127** DC/Ohms/low speed digital logic multifunction module.

| Models          |                                                                                                               |
|-----------------|---------------------------------------------------------------------------------------------------------------|
| SYS-2722        | Analog and Digital Input and Output, with DSP. Dual domain, 192k.                                             |
| SYS-2720        | Digital Input and Output, with DSP. 192k.                                                                     |
| SYS-2712        | Analog Input and Output, with DSP                                                                             |
| SYS-2702        | Analog Input and Output                                                                                       |
| Options         |                                                                                                               |
|                 | Analog burst sine waves, square waves to 20 kHz, random and pseudorandom<br>white and pink noise signals      |
|                 | Analog Intermodulation Distortion to SMPTE/DIN, CCF and DIM/TIM standards                                     |
|                 | Wow & Flutter to IEC/DIN, NAB, JIS and scrape flutter standards, weighted or unweighted                       |
| EWP-2700        | Three-Year Extended Warranty (Adds three more years to standard three-year warranty included with instrument) |
|                 | s (selected at time of order)                                                                                 |
|                 | ISA Interface Card w/AP2700 software                                                                          |
|                 | PCI Interface Card w/AP2700 software                                                                          |
|                 |                                                                                                               |
| -G              | IEEE-488 (GPIB) Interface                                                                                     |
| Filters         |                                                                                                               |
|                 | Lowpass filter for AES17 DAC measurements                                                                     |
| OPT-2020        | Lowpass filter for DAC measurements                                                                           |
| FIL-xxx         | Family of analog psophometric noise weighting filters                                                         |
| FLP-xxx         | Family of analog sharp lowpass filters                                                                        |
| FBP-xxx         | Family of analog 1/3 octave bandpass filters                                                                  |
| External Access | ories                                                                                                         |
| AUX-0025        | Switching Amplifier Measurement Filter                                                                        |
|                 | Programmable Serial Interface Adapter                                                                         |
| SWR-2122        | 12x2 switcher family expandable to 192 channels                                                               |
|                 | Multifunction module including 4 1/2 digit DC voltmeter/ohmmeter with miscellaneous digital control ports.    |
|                 | Rackmount kit Carrying handle                                                                                 |
|                 |                                                                                                               |



Testing for Optimal Results

5750 SW Arctic Drive Beaverton, OR 97005 **Tel: 503-627-0832** FAX: 503-641-8906

US Toll Free: 1-800-231-7350